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Trapped modes around a row of bottom-mounted vertical circular cylinders in a
channel are examined. The cylinders are identical, and their axes equally spaced in a
plane perpendicular to the channel walls. The analysis has been made by employing
the multipole expansion method under the assumption of linear water wave theory.
At least the same number of trapped modes is shown to exist as the number of
cylinders for both Neumann and Dirichlet trapped modes, with the exception that
for cylinders having large radius the mode corresponding to the Dirichlet trapped
mode for one cylinder will disappear. Close similarities between the Dirichlet trapped
modes around a row of cylinders in a channel and the near-resonant phenomenon in
the wave diffraction around a long array of cylinders in the open sea are discussed.
An analogy with a mass–spring oscillating system is also presented.

1. Introduction
It has been reported by Maniar & Newman (1997) that for large numbers of

equally spaced, bottom-mounted vertical circular cylinders in line in the open sea,
large wave forces will be excited on each of the cylinders at particular wavenumbers
close to those of trapped modes. Similar observations have been made by Evans &
Porter (1997b) for circular arrays of bottom-mounted circular cylinders, and both of
these cases may be understood as ‘near-trapping’.

The existence of trapped modes for a bottom-mounted circular cylinder placed
on the centreline of a wave channel was first established by Callan, Linton & Evans
(1991). It is now known that they may arise not only at wavenumbers below the cutoff
value but also in the region above the cutoff value, or in the continuous spectrum.
(The cutoff wavenumbers are k = π/2d for a Neumann boundary condition applied
on the channel walls, and k = π/d for a Dirichlet boundary condition, both for
antisymmetric waves with respect to the centreline of the channel, where k is the
wavenumber and d is the half-width of the channel.) These cases include the trapped
modes for a thin strip of finite length placed parallel to the walls but not on the
centreline in the waveguide (Evans, Linton & Ursell 1993), and those for a bottom-
mounted circular cylinder placed on the centreline of the channel at the precise values
of a/d = 0.3520905 with k = 1.488884π/d (for the Neumann trapped mode) and at
a/d = 0.2670474 with k = 1.991867π/d (for the Dirichlet trapped mode) where a is the
radius of the cylinder (Evans & Porter 1998). Here, we use the terminology ‘Neumann
trapped mode’ for the trapped mode with a Neumann boundary condition being
applied on the channel walls, and ‘Dirichlet trapped mode’ for a Dirichlet boundary
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condition being applied on them. In both cases a Neumann boundary condition is
applied on each cylinder surface.

This paper first discusses other examples of trapped modes embedded in the
continuous spectrum when N bottom-mounted vertical circular cylinders having the
same radius a are equally spaced with their axes in the plane perpendicular to the
channel walls in a channel. The distance between the centres of adjacent cylinders
across the tank is taken to be 2s and the distance between the channel wall and the
centre of the cylinder at each end of the row is s.

Evans & Porter (1997a) examined the trapped modes for multiple cylinders along
the centreline of the channel, and observed the existence of up to N trapped modes
below the cutoff wavenumber. In this paper, we will show the existence of the same
number of trapped modes as the number of cylinders across the tank, N, for both the
Neumann trapped modes and the Dirichlet trapped modes, with the exception that for
the latter, the highest trapped mode disappears when a/s & 0.677 (Maniar & Newman
1997; the figure was then modified to 0.6789 by Evans & Porter 1997a). In both cases,
the trapped modes, with the possible exception of the mode corresponding to the
lowest frequency for the Dirichlet ones, are shown to be embedded in the continuous
spectrum region.

Next, an analogy is given between the Dirichlet trapped modes for a row of equally-
spaced cylinders in the channel and the near-resonant modes for cylinders in the open
sea. Another analogy with a mass–spring oscillating system is also given, which may
offer some insights into such resonant phenomena in wave diffraction problems.

2. Formulation
2.1. Statement of the problem

Cartesian coordinates (x, y, z) are chosen such that the (x, y)-plane is located on the
mean free surface and the z-axis points upward. The fluid is contained in a channel,
the walls of which are located at y = ±d and −∞ < x < ∞, with the fluid depth being
h. N circular cylinders having the same radius a and extending vertically throughout
the fluid domain are located along the plane perpendicular to the channel walls, and
without loss of generality the axes of the cylinders are positioned at x = 0. The
distance between the centres of adjacent cylinders is taken to be 2s and the distance
between the channel wall and the centre of the cylinder at each end of the row is s.
Thus, the half-channel width d is equal to Ns. The (x, y) coordinates of the axis of
each cylinder are represented by (0, yj), where

yj = −d+ (2j − 1)s, j = 1, 2, . . . , N, (2.1)

and N polar coordinates (rj , θj) are defined with their origins at (0, yj) such that

x = rj cos θj, y − yj = rj sin θj, j = 1, 2, . . . , N. (2.2)

Figure 1 illustrates the geometrical notation for the three-cylinder case (N = 3).
The fluid is assumed to be inviscid and incompressible, and its motion to be time

harmonic with angular frequency ω. Further, irrotational fluid motion is assumed
so that a velocity potential Φ(x, y, z, t) exists. We employ the linearized boundary
condition on the free surface (Φz = KΦ on z = 0 where K = ω2/g, g being
the gravitational acceleration), and the rigid-wall condition on the bottom surface
(Φz = 0 on z = −h). By considering the configuration of the problem, the depth
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Figure 1. Geometrical notation of the problem for the three-cylinder case (N = 3).

dependence of the potential can be factored out as follows:

Φ(x, y, z, t) = Re

{
φ(x, y)

cosh k(z + h)

cosh kh
e−iωt

}
. (2.3)

Here the wavenumber k is related to the angular frequency ω by the dispersion
relation

ω2 = gk tanh kh. (2.4)

By substituting (2.3) into the Laplace equation, ∇2Φ(x, y, z, t) = 0, the Helmholtz
equation is obtained as governing equation for the complex potential φ(x, y),

(∇2 + k2)φ = 0 in |y| < d, rj > a, j = 1, 2, . . . , N. (2.5)

The boundary conditions for the Neumann trapped modes are

φy = 0 on |y| = d, −∞ < x < ∞, (2.6)

φrj = 0 on rj = a, j = 1, 2, . . . , N, (2.7)

φ→ 0 as |x| → ∞, |y| 6 d. (2.8)

For the Dirichlet trapped modes, the boundary condition (2.6) should be replaced by

φ = 0 on |y| = d, −∞ < x < ∞. (2.9)

Moreover, the symmetry of the trapped modes about the y-axis can be assumed in
the problem considered herein (Callan et al. 1991), thus the following condition is
also to be satisfied:

φx = 0 on x = 0, |y| < d, |y − yj | > aj, j = 1, 2, . . . , N. (2.10)

2.2. Multipole expansions

We employ the so-called multipole expansion method to seek the trapped mode
solutions. As the fundamental singular solutions which satisfy (2.5) and (2.10), we
consider

Y2n(krj) cos 2nθj and Y2n+1(krj) sin (2n+ 1)θj, (2.11)
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where Yn denotes the Bessel function of the second kind and order n. For wave scatter-
ing problems, the fundamental singular solutions may be expressed by H (1)

n (krj) cos nθj
andH (1)

n (krj) sin nθj as used by e.g. Linton & Evans (1992) or McIver & Bennett (1993),
where H (1)

n denotes the Hankel function of the first kind and order n. Using only the
imaginary part of the Hankel function (i.e. Yn), however, will be more convenient than
using the complex-valued function H (1)

n , since we can then work only with real-valued
functions in seeking the trapped mode solutions (see Evans & Porter 1998). In the
following, we modify the multipole expressions which have been derived by McIver
& Bennett (1993) to suit the problem here.

The total potential φ(x, y) may be expressed in the following form:

φ =

N∑
j=1

∞∑
n=0

(Aj2nZ2nφ
j
2n + B

j
2n+1Z2n+1ψ

j
2n+1), (2.12)

where the factor Zn = J ′n(ka)/Y ′n (ka) is introduced for convenience, and Jn denotes

the Bessel function of the first kind and order n. In (2.12), φj2n and ψj2n+1 are channel
multipoles that are singular at (0, yj) and satisfy (2.5) and (2.10) together with the
boundary conditions on the channel walls, (2.6) or (2.9). They can be constructed
from the integral representations of (2.11), with appropriate modification to include
the boundary conditions on the channel walls. In the scattering problem or in the
search for the trapped modes below cutoff values, each channel multipole may be
constructed to satisfy appropriate radiation conditions or (2.8) at large distances |x|.
In such cases, the remaining task is to determine the coefficients Aj2n and B

j
2n+1 to

satisfy the boundary conditions on the cylinder surfaces.
As shown below, however, in this problem each multipole is generally accompanied

by standing waves which do not vanish at large distances |x|, and so it does not
satisfy (2.8) by itself. Therefore, in order to construct trapped mode solutions, we
have to find the coefficients Aj2n and B

j
2n+1 such that the boundary condition (2.8) is

satisfied together with the boundary conditions on the cylinder surfaces, (2.7).
Referring to (3.7) and (3.14) of McIver & Bennett (1993) and modifying them to

include the fundamental singular parts as in (2.11), we obtain the following channel
multipoles:

φ
j
2n = Y2n(krj) cos 2nθj

− (−1)n

2π

∫ ∞
−∞
− ekγ(y−yj )(e−2kγd ± e2kγyj ) + e−kγ(y−yj )(e−2kγd ± e−2kγyj )

γ sinh 2kγd

× cos kxt cosh 2nτdt, (2.13)

ψ
j
2n+1 = Y2n+1(krj) sin(2n+ 1)θj

+
(−1)n

2π

∫ ∞
−∞
− ekγ(y−yj )(e−2kγd ∓ e2kγyj )− e−kγ(y−yj )(e−2kγd ∓ e−2kγyj )

γ sinh 2kγd

× cos kxt sinh(2n+ 1)τdt, (2.14)

where

t = cosh τ, γ = sinh τ, (2.15)

and the upper and lower signs of ± and ∓ correspond to Neumann and Dirichlet
boundary condition, respectively, being satisfied on the channel walls. The integrals
have to be evaluated as Cauchy principal value integrals, the physical meaning of
which is that the behaviour of the channel multipoles at large distances |x| represents
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a standing wave rather than a propagating wave, and by which the channel multipoles
remain real-valued functions.

Further, modification of (3.12) and (3.16) and utilization of (3.5) in McIver &
Bennett (1993) leads to the following series expressions corresponding to (2.13) and
(2.14):

φ
j
2n =

1

kd

M∑
m=0

εm

{
cos(mπy/2d) cos(mπyj/2d)
sin(mπy/2d) sin(mπyj/2d)

}
t−1
m sin(k|x|tm)c2n(tm)

− 2

kd

∞∑
m=M+1

{
cos(mπy/2d) cos(mπyj/2d)
sin(mπy/2d) sin(mπyj/2d)

}
s−1
m e−k|x|smd2n(sm), (2.16)

ψ
j
2n+1 =

2

kd

M∑
m=1

{− cos(mπy/2d) sin(mπyj/2d)
sin(mπy/2d) cos(mπyj/2d)

}
t−1
m sin(k|x|tm)c2n+1(tm)

− 2

kd

∞∑
m=M+1

{− cos(mπy/2d) sin(mπyj/2d)
sin(mπy/2d) cos(mπyj/2d)

}
s−1
m e−k|x|smd2n+1(sm),

(2.17)

where

tm = (1− (mπ/2kd)2)1/2, (2.18)

sm = ((mπ/2kd)2 − 1)1/2, (2.19)

cn(tm) = cos(n sin−1 tm), (2.20)

dn(sm) = cosh(n sinh−1 sm), (2.21)

ε0 = 1, εm = 2, m = 1, 2, . . . , (2.22)

and M is an integer satisfying

Mπ < 2kd < (M + 1)π. (2.23)

In (2.16) and (2.17), for a Neumann boundary condition the upper expressions in
the brackets should be taken for even values of m and the lower expressions for odd
values of m; whereas for a Dirichlet boundary condition the upper expressions should
be taken for odd values of m and the lower expressions for even values of m. This
rule for the bracket will be retained throughout this paper.

As is obvious from (2.16) and (2.17), these multipole potentials satisfy the boundary
conditions on the channel walls, (2.6) or (2.9). In general, however, they do not satisfy
the boundary condition (2.8) because of the standing wave components which do not
vanish at large distances |x|.

For a Neumann boundary condition ψ
j
2n+1 does not include such a standing wave

component and satisfies (2.8) when k < π/2d (M = 0). Those multipole potentials
which vanish as |x| → ∞ have been used as a basis for the construction of trapped
modes in a channel enclosing a cylinder located on the centreline of the channel
(Callan et al. 1991). Similarly, for a single cylinder located on the centreline of the
channel (yj = 0) with a Dirichlet boundary condition being applied on the channel

walls, ψj2n+1 has no standing wave component when k < π/d (M = 1). The Dirichlet
trapped mode around a single cylinder which is located on the centreline of the
channel has been calculated by Maniar & Newman (1997) by superposing such
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multipole potentials when k < π/d. It should be noted, however, that for a Dirichlet

boundary condition both φ
j
2n and ψ

j
2n+1 have no standing wave component at large

distances |x| when k < π/2d (M = 0), which is consistent with the fact that the cutoff
wavenumber for a Dirichlet boundary condition is π/2d (as can be derived by the
method of separation of variables at large distances |x|).

In order to construct trapped modes using channel multipoles (2.13) and (2.14),
those standing wave components which do not vanish as |x| → ∞ must be cancelled

out by appropriately choosing the coefficients Aj2n and Bj2n+1. Now the trapped modes
embedded in the continuous spectrum for one cylinder situated on the centreline of
the channel can be constructed by appropriately choosing ‘the strength of the Fourier
components’ B2n+1 (Evans & Porter 1998). In this paper, instead, we form the trapped
modes by appropriately choosing ‘the strength of the multipoles radiated from each
cylinder’; in other words, we adjust the coefficients Aj2n and B

j
2n+1 focusing on the j

index which represents cylinder number, in order to cancel out the standing wave
components at large distances |x|.

Cancellation of the standing wave components is possible if we employ the following
formulae. They were initially found heuristically in a preliminary numerical analysis
of the problem by Utsunomiya & Eatock Taylor (1998), but they are used here as an
essential prerequisite to construct the trapped modes around a row of cylinders. This
procedure leads to the major advantage as compared with our initial analysis that we
can now avoid the use of complex arithmetic when searching for the trapped mode
wavenumbers. Thus for Neumann trapped modes we use

A
j
2n = A2n cos

(
(2j − 1)qπ

2N

)
, B

j
2n+1 = B2n+1 sin

(
(2j − 1)qπ

2N

)
, q = 1, 2, . . . , N;

(2.24)
and for Dirichlet trapped modes we take

A
j
2n = A2n sin

(
(2j − 1)qπ

2N

)
, B

j
2n+1 = B2n+1 cos

(
(2j − 1)qπ

2N

)
, q = 1, 2, . . . , N−1,

(2.25)

A
j
2n = 0, B

j
2n+1 = B2n+1, q = N, (2.26)

where we designate q as the mode number of the trapped mode.
Inserting (2.16), (2.17) and (2.24) into (2.12), the following expression can be

obtained for the Neumann trapped mode:

φN ∼ 1

kd

∞∑
n=0

[A2nZ2n

M∑
m=0

N∑
j=1

εm cos(
(2j − 1)qπ

2N
)

{
cos (mπy/2d) cos (mπyj/2d)
sin (mπy/2d) sin (mπyj/2d)

}
×t−1

m sin(k|x|tm)c2n(tm)

+B2n+1Z2n+1

M∑
m=1

N∑
j=1

2 sin(
(2j − 1)qπ

2N
)

{− cos(mπy/2d) sin(mπyj/2d)
sin(mπy/2d) cos(mπyj/2d)

}
×t−1

m sin(k|x|tm)c2n+1(tm)], |x| → ∞, (2.27)

where subscript N in φN specifies a Neumann trapped mode. Furthermore, using (2.1)
and the formula (Gradshteyn & Ryzhik 1994, 1.342)

n∑
j=1

cos(2j − 1)x = 1
2

sin 2nx cosec x, (2.28)



Trapped modes around a row of cylinders in a channel 265

we can obtain the relationships

N∑
j=1

cos

(
(2j − 1)qπ

2N

){
cos (mπyj/2d)
sin (mπyj/2d)

}

=
1

2

{
(−1)m/2

(−1)(m+1)/2

} N∑
j=1

[
cos

(
(2j − 1)(m− q)π

2N

)
+ cos

(
(2j − 1)(m+ q)π

2N

)]
{6= 0 (for m = q, 2N − q, 2N + q, 4N − q, 4N + q, . . .)

= 0 (otherwise);
(2.29)

and

N∑
j=1

sin

(
(2j − 1)qπ

2N

){
sin(mπyj/2d)
cos(mπyj/2d)

}

=
1

2

{
(−1)m/2

(−1)(m−1)/2

} N∑
j=1

[
cos

(
(2j − 1)(m− q)π

2N

)
− cos

(
(2j − 1)(m+ q)π

2N

)]
{6= 0 (for m = q, 2N − q, 2N + q, 4N − q, 4N + q, . . .)

= 0 (otherwise),
(2.30)

where for this case of a Neumann boundary condition the upper expressions in the
brackets should be taken for even values of m and the lower expressions for odd
values of m.

Therefore, when M < q, the right-hand side of (2.27) vanishes, and thus the
potential φN has no standing wave component at large distances |x| and it satisfies
the boundary condition (2.8). The condition M < q is equivalent to k < qπ/2d
(q > M + 1) from (2.23). Conversely when k > qπ/2d (q 6 M), the right-hand side
of (2.27) does not vanish and the potential φN has standing wave components at
large distances |x|. Therefore, the cutoff wavenumber for the problem in which the
conditions (2.24) are applied becomes qπ/2d for q = 1, 2, . . . , N.

Similarly, for Dirichlet trapped modes, we can show that the cutoff wavenumbers
for the problems in which the conditions (2.25) or (2.26) are applied become qπ/2d
for q = 1, 2, . . . , N − 1 or qπ/d for q = N, respectively. The derivation of the former
cutoff wavenumber is almost the same as the case for Neumann trapped modes. The
latter cutoff wavenumber qπ/d for q = N can be derived as follows:

φD ∼ 2

kd

∞∑
n=0

B2n+1Z2n+1

M∑
m=1

N∑
j=1

{− cos(mπy/2d) sin(mπyj/2d)
sin(mπy/2d) cos(mπyj/2d)

}
×t−1

m sin(k|x|tm)c2n+1(tm), q = N, |x| → ∞, (2.31)

where subscript D in φD specifies a Dirichlet trapped mode. Furthermore, using (2.1)
and (2.28) we can deduce that

N∑
j=1

{
sin(mπyj/2d)
cos(mπyj/2d)

}
=

{
(−1)(m+1)/2

(−1)m/2

} N∑
j=1

cos

(
(2j − 1)mπ

2N

)
{6= 0 (for m = 2N, 4N, . . .)

= 0 (otherwise),
(2.32)

where for the case of a Dirichlet boundary condition the upper expressions in the
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brackets should be taken for odd values of m and the lower expressions for even
values of m. Therefore, when M < 2N, the right-hand side of (2.31) vanishes, and
thus the potential φD has no standing wave component at large distances |x| and
it satisfies the boundary condition (2.8). The condition M < 2N is equivalent to
k < Nπ/d (M + 1 6 2N) from (2.23).

2.3. Construction of trapped modes

By the above procedure, the boundary conditions (2.6) (or (2.9)) and (2.8) together
with (2.5) and (2.10) have already been satisfied by the total potential φ(x, y) defined
by (2.12) when the relationships (2.24), (2.25) or (2.26) are applied. The remaining
task for the construction of the trapped mode is to satisfy the boundary conditions on
the cylinder surfaces (2.7). We can employ the same procedure as Linton & McIver
(1996) in the following to satisfy the boundary conditions on the multiple cylinder
surfaces in the wave channel.

From (3.19)–(3.24) of McIver & Bennett (1993),

φ
j
2n = Y2n(krj) cos 2nθj

+

∞∑
m=0

(αj2n,2mJ2m(krj) cos 2mθj + β
j
2n,2m+1J2m+1(krj) sin(2m+ 1)θj),

(2.33)

ψ
j
2n+1 = Y2n+1(krj) sin(2n+ 1)θj

+

∞∑
m=0

(aj2n+1,2mJ2m(krj) cos 2mθj + b
j
2n+1,2m+1J2m+1(krj) sin(2m+ 1)θj),

(2.34)

can be obtained, where the coefficients will be given later. Alternative expressions for
the above multipoles, in which the singularity at (0, yj) is expanded about another
point (0, yp), j 6= p, can be obtained from (A.10)–(A.15) of Linton & McIver (1996):

φ
j
2n =

∞∑
m=0

[(Cjp
2n,2m + α

jp
2n,2m)J2m(krp) cos 2mθp

+(Djp
2n,2m+1 + β

jp
2n,2m+1)J2m+1(krp) sin(2m+ 1)θp], j 6= p; (2.35)

ψ
j
2n+1 =

∞∑
m=0

[(Ejp
2n+1,2m + a

jp
2n+1,2m)J2m(krp) cos 2mθp

+(Fjp2n+1,2m+1 + b
jp
2n+1,2m+1)J2m+1(krp) sin(2m+ 1)θp], j 6= p. (2.36)

The coefficients are as shown below, wherein only the imaginary parts of the coeffi-
cients given by (A.10)–(A.13) in Linton & McIver (1996) are retained:

α
jp
2n,2m =

εm(−1)n−m+1

π

∫ ∞
−∞
− e−2kγd cosh kγ(yp − yj)± cosh kγ(yp + yj)

γ sinh 2kγd

× cosh 2mτ cosh 2nτdt, (2.37)

β
jp
2n,2m+1 =

2(−1)n−m+1

π

∫ ∞
−∞
− e−2kγd sinh kγ(yp − yj)± sinh kγ(yp + yj)

γ sinh 2kγd

× sinh(2m+ 1)τ cosh 2nτdt, (2.38)
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a
jp
2n+1,2m =

εm(−1)n−m

π

∫ ∞
−∞
− e−2kγd sinh kγ(yp − yj)∓ sinh kγ(yp + yj)

γ sinh 2kγd

× cosh 2mτ sinh(2n+ 1)τdt, (2.39)

b
jp
2n+1,2m+1 =

2(−1)n−m

π

∫ ∞
−∞
− e−2kγd cosh kγ(yp − yj)∓ cosh kγ(yp + yj)

γ sinh 2kγd

× sinh(2m+ 1)τ sinh(2n+ 1)τdt, (2.40)

where the upper and lower signs of ± and ∓ correspond to Neumann and Dirichlet
boundary conditions respectively being satisfied on the channel walls. Also, the
relationships αj2n,2m = α

jj
2n,2m, βj2n,2m+1 = β

jj
2n,2m+1, a

j
2n+1,2m = a

jj
2n+1,2m and b

j
2n+1,2m+1 =

b
jj
2n+1,2m+1 hold. Moreover,

C
jp
2n,2m = 1

2
εm[(−1)m+nY2n+2m(kRjp) + (−1)m−nY2n−2m(kRjp)], (2.41)

D
jp
2n,2m+1 = ±[−(−1)m+nY2n+2m+1(kRjp) + (−1)m−nY2n−2m−1(kRjp)], (2.42)

E
jp
2n+1,2m = ± 1

2
εm[(−1)m+nY2n+2m+1(kRjp) + (−1)m−nY2n−2m+1(kRjp)], (2.43)

F
jp
2n+1,2m+1 = −(−1)m+nY2n+2m+2(kRjp) + (−1)m−nY2n−2m(kRjp), (2.44)

where Rjp = 2s|j − p| and the plus sign of ± should be taken when j < p and the
minus sign when j > p.

Inserting the above multipoles (2.33)–(2.36) into (2.12), we can obtain the following
expression for the total potential φ(rp, θp) in terms of the local polar coordinates
(rp, θp), p = 1, 2, . . . , N, which is valid only in the vicinity of the cylinder p (the
restriction arising from use of Graf’s addition theorem in the derivation of (2.35) and
(2.36)):

φ(rp, θp) =

∞∑
m=0

{Ãp2mY2m(krp) cos 2mθp + B̃
p
2m+1Y2m+1(krp) sin(2m+ 1)θp

+

N∑
j=1

∞∑
n=0

[Ãj2n(α̃
jp
2n,2mJ2m(krp) cos 2mθp + β̃

jp
2n,2m+1J2m+1(krp) sin(2m+ 1)θp)

+B̃j2n+1(ã
jp
2n+1,2mJ2m(krp) cos 2mθp + b̃

jp
2n+1,2m+1J2m+1(krp) sin(2m+ 1)θp)]}.

(2.45)

Here

Ã
j
2n = Z2nA

j
2n, B̃

j
2n+1 = Z2n+1B

j
2n+1, (2.46)

and

α̃
jp
2n,2m =

{
C
jp
2n,2m + α

jp
2n,2m (for j 6= p)

α
pp
2n,2m (for j = p),

(2.47)

are used for convenience. The coefficients β̃jp2n,2m+1, ã
jp
2n+1,2m and b̃jp2n+1,2m+1 are similarly

defined as above.
Applying the boundary conditions (2.7) on each of the cylinder surfaces, p =

1, 2, . . . , N, we finally obtain the following homogeneous systems of equations:

A
p
2m +

N∑
j=1

∞∑
n=0

(Ãj2nα̃
jp
2n,2m + B̃

j
2n+1ã

jp
2n+1,2m) = 0, (2.48)
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B
p
2m+1 +

N∑
j=1

∞∑
n=0

(Ãj2nβ̃
jp
2n,2m+1 + B̃

j
2n+1b̃

jp
2n+1,2m+1) = 0, (2.49)

where p = 1, 2, . . . , N and m = 0, 1, . . . ,∞ in both cases. In the numerical calculations,
the infinite systems must be truncated in terms of the Fourier modes, n and m, and
the total number of Fourier modes is defined by NF both for odd and even modes.

Application of the relationships (2.24), (2.25) or (2.26) to the truncated systems of
equations (2.48) and (2.49) leads to the following homogeneous systems of equations:
for Neumann trapped modes corresponding to q = 1, 2, . . . , N − 1

A2m cos

(
(2p− 1)qπ

2N

)
+

NF−1∑
n=0

[
Ã2n

N∑
j=1

cos

(
(2j − 1)qπ

2N

)
α̃
jp
2n,2m

+B̃2n+1

N∑
j=1

sin

(
(2j − 1)qπ

2N

)
ã
jp
2n+1,2m

]
= 0, (2.50)

B2m+1 sin

(
(2p− 1)qπ

2N

)
+

NF−1∑
n=0

[
Ã2n

N∑
j=1

cos

(
(2j − 1)qπ

2N

)
β̃
jp
2n,2m+1

+ B̃2n+1

N∑
j=1

sin

(
(2j − 1)qπ

2N

)
b̃
jp
2n+1,2m+1

]
= 0; (2.51)

and for the Neumann trapped mode corresponding to q = N

B2m+1(−1)p−1 +

NF−1∑
n=0

B̃2n+1

N∑
j=1

(−1)j−1b̃
jp
2n+1,2m+1 = 0. (2.52)

Similarly, for Dirichlet trapped modes corresponding to q = 1, 2, . . . , N − 1:

A2m sin

(
(2p− 1)qπ

2N

)
+

NF−1∑
n=0

[
Ã2n

N∑
j=1

sin

(
(2j − 1)qπ

2N

)
α̃
jp
2n,2m

+ B̃2n+1

N∑
j=1

cos

(
(2j − 1)qπ

2N

)
ã
jp
2n+1,2m

]
= 0, (2.53)

B2m+1 cos

(
(2p− 1)qπ

2N

)
+

NF−1∑
n=0

[
Ã2n

N∑
j=1

sin

(
(2j − 1)qπ

2N

)
β̃
jp
2n,2m+1

+ B̃2n+1

N∑
j=1

cos

(
(2j − 1)qπ

2N

)
b̃
jp
2n+1,2m+1

]
= 0; (2.54)

and for the Dirichlet trapped mode corresponding to q = N

B2m+1 +

NF−1∑
n=0

B̃2n+1

N∑
j=1

b̃
jp
2n+1,2m+1 = 0. (2.55)

Non-trivial solutions of the above homogeneous systems of equations will exist
if and only if the determinant of the real coefficient matrix vanishes. If such a
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Figure 2. Determinant of the system matrix versus wavenumber for q = 3, N = 4, and NF = 4 in
the Neumann channel (a/s = 0.5).

vanishing point can be found, it will represent the trapped mode wavenumber. In
the next section, we calculate the determinant of the 2NF × 2NF system matrix for
q = 1, 2, . . . , N − 1 and that of NF ×NF system matrix for q = N, and search for the
determinant’s vanishing point by numerical analysis.

3. Results
3.1. Trapped modes in a channel

In the numerical evaluation of the coefficient matrix, the infinite integrals (2.37)–(2.40)
must be evaluated with high accuracy. Here the method described in Appendix A of
McIver & Bennett (1993) has been implemented, and satisfactory results have been
obtained as shown below. The determinant of the matrix has been computed by
utilizing the LU decomposition. The search for the determinant’s vanishing point has
been made by using the NAG library subroutine c05adf, which uses Brent’s method.
An example of the variation of the determinant with wavenumber is shown in figure 2.
As is obvious, for each mode the determinant changes its sign only once below the
cutoff wavenumber; thus the trapped mode wavenumber can be found easily by
specifying two points in Brent’s method such that the determinant has opposite signs.

In order to examine the effect of truncation of the Fourier modes, Neumann
trapped mode wavenumbers have been calculated for various values of NF and the
results are shown in table 1 for a/s = 0.5 and a/s = 1.0. The latter spacing is the
special case which corresponds to the cylinders touching, and creating a barrier across
the tank. Only one trapped mode wavenumber has been obtained for each mode q,
just below the corresponding cutoff wavenumber, ks = qπ/2N (or k = qπ/2d). For
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N q NF = 1 NF = 2 NF = 4 NF = 8 NF = 16

(a) 4 1 0.392169 0.392164 0.392164 0.392164 0.392164
4 2 0.780408 0.780278 0.780278 0.780278 0.780278
4 3 1.152666 1.151933 1.151931 1.151931 1.151931
4 4 1.391316 1.391314 1.391313 1.391313 1.391313

1 1 1.391316 1.391314 1.391314 1.391314 —

(b) 5 1 0.314062 0.314010 0.314007 0.314007 0.314007
5 2 0.627376 0.626983 0.626938 0.626938 0.626938
5 3 0.938123 0.936807 0.936507 0.936505 0.936505
5 4 1.238101 1.234641 1.233664 1.233661 1.233661
5 5 1.430229 1.427529 1.427480 1.427480 1.427480

1 1 1.430229 1.427529 1.427481 1.427481 —

Table 1. Neumann trapped mode wavenumber ks for (a) N = 4 and a/s = 0.5, and (b) N = 5
and a/s = 1.0, together with the computations of Maniar & Newman (1997) for a single cylinder
(N = q = 1).

the case of N = 4 and a/s = 0.5, (a), six-figure accuracy after the decimal point is
attained with the number of Fourier modes NF = 4. For the case of N = 5 and
a/s = 1.0, (b), six-figure accuracy after the decimal point is attained with NF = 8, and
the results for NF = 4 give five-figure accuracy after the decimal point. Comparisons
with Neumann trapped mode wavenumbers for the single cylinder calculated by
Maniar & Newman (1997) are also made, and satisfactory agreement for the cases
of N = q = 4 and N = q = 5 is observed. In the subsequent calculations we
generally employ NF = 8 and retain six figures after the decimal point; but for
cases with large numbers of cylinders we employ NF = 4 and reduce the significant
number of figures after the decimal point to five. This is based on consideration
of the computational effort (the most time consuming part of the computation is
for evaluation of infinite integrals (2.37)–(2.40), and the computation time is almost
proportional to N ×N2

F ).
Table 2 shows the Neumann trapped mode wavenumbers (a) and Dirichlet trapped

mode numbers (b) both for a/s = 0.5 and for different numbers of cylinders. For each
value of q, only one vanishing point of the determinant has been found. Therefore,
we have obtained N trapped modes for N cylinders in the case of a/s = 0.5.

Figure 3 shows the equipotential contours of the Neumann trapped mode waves
for the case of four cylinders (N = 4) and a/s = 0.5. Because of the symmetry of the
trapped waves, only one quadrant of the full channel is shown.

The highest (Nth) trapped mode in each case is equivalent to that for the case of
one cylinder, as seen from figure 3 and table 2; actually we can generate the trapped
mode potential by appropriately copying the trapped mode potential for the one
cylinder case. For the Neumann trapped mode,

φN(x, y − y1) = φ̄N(x, y), |y − y1| 6 s,
φN(x, y − y2) = −φ̄N(x, y), |y − y2| 6 s,
φN(x, y − y3) = φ̄N(x, y), |y − y3| 6 s,

· · · ,

 (3.1)

where φ̄N(x, y) is the Neumann trapped mode potential for the one cylinder case.
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N q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

(a) 1 1.391313 — — — — — — —
2 0.780278 1.391313 — — — — — —
3 0.522275 1.031837 1.391313 — — — — —
4 0.392164 0.780278 1.151931 1.391313 — — — —
5 0.313891 0.625925 0.932446 1.220160 1.391313 — — —
6 0.261646 0.522275 0.780278 1.031837 1.262991 1.391313 — —
7 0.224303 0.447987 0.670186 0.889272 1.101208 1.291705 1.391313 —
8 0.196285 0.392164 0.587112 0.780278 0.969965 1.151931 1.311888 1.391313

(b) 1 3.071722 — — — — — — —
2 0.780278 3.071722 — — — — — —
3 0.522275 1.031837 3.071722 — — — — —
4 0.392164 0.780278 1.151931 3.071722 — — — —
5 0.313891 0.625925 0.932446 1.220160 3.071722 — — —
6 0.261646 0.522275 0.780278 1.031837 1.262991 3.071722 — —
7 0.224303 0.447987 0.670186 0.889272 1.101208 1.291706 3.071722 —
8 0.196285 0.392164 0.587112 0.780278 0.969965 1.151931 1.311888 3.071722

Table 2. Neumann trapped mode wavenumber ks (a) and Dirichlet trapped mode wavenumber ks
(b), both for a/s = 0.5 and NF = 8.

Similarly for the Dirichlet mode,

φD(x, y − y1) = φ̄D(x, y), |y − y1| 6 s,
φD(x, y − y2) = φ̄D(x, y), |y − y2| 6 s,
φD(x, y − y3) = φ̄D(x, y), |y − y3| 6 s,

· · · ,

 (3.2)

where φ̄D(x, y) is the Dirichlet trapped mode potential for the one cylinder case. These
potentials satisfy all of the boundary conditions (2.6) (or (2.9)), (2.7) and (2.8) for the
trapped mode together with the governing equation (2.5) and the symmetry condition
(2.10); they thus represent trapped modes. Obviously, these solutions correspond to
the Nth trapped mode in table 2.

It may also be noted from figure 3 and also from table 2 that the second mode
for four cylinders is identical to the first mode for two cylinders: the same trapped
mode wavenumbers are obtained for the case of N = 4 and q = 2 and that of
N = 2 and q = 1. Similar relationships may be found between the trapped modes
for three cylinders and those for six cylinders or between four and eight cylinders.
More generally the same trapped mode wavenumber is obtained for the same value
of q/N (and for the same radius of cylinders; this is apparent from table 1). Such
relationships can be justified by expressions similar to (3.1) or (3.2), by appropriately
copying the trapped mode potential for the same value of q/N.

Another interesting feature observed in table 2 is that the same trapped mode
wavenumbers are obtained for the Dirichlet and Neumann trapped modes at the
same values of q and N, except for the Nth mode. We could anticipate an Nth
Dirichlet trapped mode at ks = 1.391313 for this case, considering the symmetry
between (a) and (b) of table 2. However, non-existence of such a trapped mode
is consistent with the mathematical proof given by McIver & Linton (1995): they
proved the non-existence of the Dirichlet trapped mode below ks < π/2 for an
obstacle satisfying ny 6 0 if y > 0, and ny > 0 if y 6 0 (where (nx, ny) is the normal
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to the obstacle out of the fluid region). In (2.25) the condition for q = N has been
excluded in advance; this corresponds to the anticipated Dirichlet trapped mode (at
ks = 1.381313 for this case), which in fact does not exist.

The reason why the same trapped wavenumber is obtained in the Neumann and
Dirichlet modes at the same values of N and q (except when N = q) may be explained
in a similar way to the argument based on (3.1) and (3.2) when N is an even number.
For example when N = 2 and q = 1, the Dirichlet trapped mode potential φD(x, y)
can be generated from the Neumann trapped mode potential φN(x, y) by

φD(x, y) = −φN(x, d− y), y > 0,

φD(x, y) = φN(x,−d− y), y 6 0.

}
(3.3)

Similar construction of the equivalent trapped mode potentials is always possible
when N is an even number. However, when N is an odd number, e.g. when N = 3
and q = 1, such a simple method to generate equivalent trapped mode potentials in
the Neumann and Dirichlet modes seems not to exist.

The connection with the cutoff wavenumber (frequency) is now examined. As
derived by the method of separation of variables, the cutoff wavenumber of the
channel is 0 for Neumann trapped modes and k = π/2d for Dirichlet trapped modes.
Thus, excluding the single cylinder case (N = 1), we see that only the first (q = 1)
Dirichlet trapped modes are below the cutoff wavenumber of k = π/2d (ks = π/2N if
d = Ns is applied), and otherwise the modes are all above the cutoff. In other words,
they are embedded in the continuous spectrum.

If we restrict ourselves to antisymmetric waves with respect to the centreline of
the channel, the cutoff wavenumber becomes k = π/2d (ks = π/2N) for Neumann
trapped modes and k = π/d (ks = π/N) for Dirichlet trapped modes. For such cutoff
wavenumbers, the first (q = 1) Neumann trapped modes are included below the
cutoff, and the second (q = 2) Dirichlet trapped modes are included below the cutoff,
excluding the case N = 2.

In the process of the construction of trapped modes, however, we enforced the
relationships (2.24), (2.25) or (2.26) and eliminated the standing (or propagating)
wave components at large |x|. For such modified problems, the cutoff wavenumbers
are considered to be k = qπ/2d (ks = qπ/2N) for Neumann and Dirichlet modes,
except for the case k = Nπ/d (ks = π) for the Nth Dirichlet mode. In our investigation
the vanishing points of the determinant have been sought below the corresponding
cutoff wavenumbers, and only one vanishing point has been found for each case, just
below the cutoff wavenumber. We might find trapped modes even above the cutoff
wavenumbers, using a method similar to that of Evans & Porter (1998), but that is
beyond the scope of this paper.

As stated above, the cutoff wavenumber varies depending on how we pose the
problem (see Evans, Levitin & Vassiliev 1994). It may however be reasonable to con-
clude that these trapped modes on multiple cylinders are above the cutoff wavenumber
(with the possible exception of the first Dirichlet trapped modes), since each multipole
potential radiates standing (propagating) waves at large distances |x|, and cancellation

of these has been enforced by means of special relationships for the coefficients Aj2n
and Bj2n+1.

Table 3 shows (a) the Neumann and (b) Dirichlet trapped mode wavenumbers ks
for four cylinders and various values of the cylinder radius a/s. For every case of
the Neumann mode, four trapped modes are obtained. On the other hand, for the
Dirichlet mode the highest mode disappears as the cylinder radius becomes large.
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a/s q = 1 q = 2 q = 3 q = 4 N = q = 1

(a) 0.1 0.392697 0.785383 1.178043 1.569050 1.569051
0.2 0.392672 0.785167 1.177154 1.550230 1.550230
0.3 0.392583 0.784351 1.173315 1.504842 1.504842
0.4 0.392405 0.782655 1.164617 1.446547 1.446547
0.5 0.392164 0.780278 1.151931 1.391313 1.391314
0.6 0.391317 0.777932 1.139058 1.348300 1.348300
0.7 0.391817 0.776556 1.130706 1.322882 1.322882
0.8 0.391867 0.776899 1.131026 1.320790 1.320789
0.9 0.392086 0.779121 1.142527 1.351785 1.351785
1.0 0.392395 0.782404 1.161919 1.427481 1.427481

(b) 0.1 0.392697 0.785383 1.178043 3.129605 3.129605
0.2 0.392672 0.785167 1.177154 3.055177 3.055177
0.3 0.392583 0.784351 1.173315 2.989795 2.989795
0.4 0.392405 0.782655 1.164617 2.999586 2.999586
0.5 0.392164 0.780278 1.151931 3.071722 3.071722
0.6 0.391317 0.777932 1.139057 3.132556 3.132556
0.7 0.391817 0.776556 1.130706 — —
0.8 0.391867 0.776899 1.131026 — —
0.9 0.392086 0.779121 1.142528 — —
1.0 0.392395 0.782404 1.161919 — —

Table 3. Neumann trapped mode wavenumber ks (a) and Dirichlet trapped mode wavenumber ks
(b) both for N = 4 and NF = 8, together with the computations of Maniar & Newman (1997) for
a single cylinder (N = q = 1).

As a check on the numerical accuracy, the trapped mode wavenumbers for one
cylinder (N = q = 1) are also indicated, figures for which are obtained from Maniar
& Newman (1997). The trapped mode wavenumbers for one cylinder by the program
developed here are exactly the same as the q = 4 column of table 3 to seven-
figure accuracy. The agreement between the q = 4 column and the trapped mode
wavenumber for one cylinder shows the equivalency between the two cases, together
with the satisfactory numerical accuracy.

As is already known, the Dirichlet trapped mode for one cylinder only exists
when a/s . 0.6789 (Maniar & Newman 1997; Evans & Porter 1997). Because of the
equivalency of the Nth trapped mode with the trapped mode for a single cylinder, the
Nth Dirichlet trapped mode disappears at large values of a/s (& 0.6789) as expected.

We may conclude therefore that at least N trapped modes exist for an array
of N equally-spaced circular cylinders of the same radius in a channel, with the
exception that the trapped mode corresponding to the Dirichlet one for a single
cylinder disappears for large radius cylinders (a/s & 0.6789). We cannot remove the
word ‘at least’ in the above arguments, because the construction of the trapped mode
here is based on (2.24), (2.25) or (2.26), which are only sufficient conditions to satisfy
(2.8) and not necessary conditions. Actually, if we consider the cylinder array for
a/s = 0.3520905, the array should have at least one additional Neumann trapped
mode at ks = 1.488884π (Evans & Porter 1998) and the number of trapped modes
will become at least N + 1 in such a case.

3.2. Analogy with the near-resonant phenomenon around a long array of cylinders

The near-resonant phenomenon around a long array of cylinders in the open sea
presented by Maniar & Newman (1997) will be considered next, and related to the
trapped modes around a row of cylinders in a channel.
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The wave force induced on each cylinder of the array in a channel can be deduced
by using the same procedure as Linton & McIver (1996). Inserting (2.48) and (2.49)
into (2.45), we obtain

φ(rj , θj) =

∞∑
m=0

{Aj2m(Z2mY2m(krj)− J2m(krj)) cos 2mθj

+Bj2m+1(Z2m+1Y2m+1(krj)− J2m+1(krj)) sin(2m+ 1)θj}; (3.4)

and using the Wronskian relations for Bessel functions in the expressions on the
cylinder surfaces, we have

φ(a, θj) = − 2

πka

∞∑
m=0

{
A
j
2m cos 2mθj
Y ′2m(ka)

+
B
j
2m+1 sin(2m+ 1)θj

Y ′2m+1(ka)

}
. (3.5)

By utilizing (2.3) and integrating the pressure on the cylinder surface, the wave
force on the jth cylinder in the y-direction can be expressed as Re{Yje−iωt} where

Yj = −ρiaω tanh kh

k

∫ 2π

0

φ(a, θj) sin θjdθj =
2ρiω tanh kh

k2Y ′1 (ka)
B
j
1, (3.6)

and ρ is the density of the fluid. Thus the coefficient Bj1 defines the force distribution

on the array of cylinders at the trapped mode frequency. The expressions for Bj1 have
been defined by (2.24), (2.25) or (2.26), thus we know the force distributions as closed
formulae.

We have compared the wave force distributions given by (2.25) with the wave
force distributions induced in a long array of cylinders in the open sea at the near-
resonant states, and found close similarities. Figures 4(a) and 4(b) show the wave
force distributions along an array of 50 cylinders in the open sea at the near-resonant
states, computed using the interaction theory of Linton & Evans (1990), whereas
figures 4(c) and 4(d) show wave force distributions for Dirichlet trapped mode waves
for 50 cylinders across the tank. This illustrates the close similarities, although in the
open-sea problem there exists energy dissipation to the far field; thus a slight phase
shift occurs, whereas for the trapped mode there is no loss of energy and no phase
shift.

Table 4 compares the Dirichlet trapped mode wavenumbers of the second highest
modes (q = N − 1) in the channel with the wavenumber at which the peak load
occurs within a finite array of N cylinders in the open sea. For a sufficient number of
cylinders they agree very well, which also shows the close similarities between these
two cases.

In the open sea problem, there exist several near-resonant states below the
wavenumber at which the highest wave force is observed below ks = π/2. An example
is shown in figure 4(b), where close similarities are found between the near-resonant
state and the third highest trapped mode (q = 48). Such a mode-like behaviour of the
near-resonant phenomenon in a long array of cylinders was first discovered by Maniar
& Newman and discussed in Newman (1997). Table 5 compares the wavenumbers
at which such a near-resonant phenomenon occurs with the Dirichlet trapped mode
wavenumbers. They agree very well, which also shows their resemblance.

3.3. Analogy with a mass–spring oscillating system

The wave force distributions shown in figure 4 and formulated in (2.24), (2.25) and
(2.26) seem to resemble the modes of a mechanical vibration system. The physical
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Figure 4. Comparison of the distribution of in-line wave forces along an array of 50 cylinders of
a/s = 0.5 in the open sea for the near-resonant state at (a) ks = 1.3889 and (b) ks = 1.3819, with
the wave force distribution for Dirichlet trapped mode waves for (c) q = 49 and (d) q = 48. The
lines in (a) and (b) indicate: – – – –, real part; ——, imaginary part; — ·—, magnitude.

background of the occurrence of the trapped modes around an array of cylinders
may be closely related to the nature of a general periodic system. We have introduced
the formulae (2.24), (2.25) and (2.26) above, and observed that they play a key role
in constructing trapped modes around an array of cylinders. A complete physical
understanding of the occurrence of such distribution functions, however, has not yet
been achieved. Instead, we consider here a simple mechanical system which also has
the same distribution functions (given by (2.24) and (2.25)) as the modal functions.

The basic unit in the mechanical analogy corresponds to one cylinder. It consists of
a uniform massless cylindrical bar of unit cross-section, unit length and unit modulus
of elasticity, with a unit point mass attached at its mid-length. The mass is allowed to
oscillate in the direction of the axis of the bar. If the two free ends of the bar are fixed,
the square of the natural frequency of vibration of the point mass is 4, which may be
considered to correspond to the Neumann trapped mode for one cylinder in the tank.
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N q ks kps
†

(a) ∞ – 1.55023 1.55023
100 99 1.54446 1.54530
50 49 1.53235 1.53799
25 24 1.50796 1.52761
10 9 1.41141 1.52162

(b) ∞ – 1.39131 1.39131
100 99 1.39071 1.39071
50 49 1.38890 1.38891
25 24 1.38182 1.38205
10 9 1.33764 1.34635

(c) ∞ – 1.32079 1.32079
100 99 1.32041 1.32041
50 49 1.31927 1.31925
25 24 1.31474 1.31463
10 9 1.28441 1.28518

Table 4. Comparison of the trapped mode wavenumber ks for q = N − 1 and NF = 4 with the
wavenumber kps at which the peak load occurs within a finite array of N cylinders in the open
sea († figures from table 3 of Maniar & Newman 1997). The case for N = ∞ shows the Neumann
trapped mode wavenumber for a single cylinder. (a) a/s = 0.2, (b) a/s = 0.5 and (c) a/s = 0.8.

q ks kps

49 1.38890 1.38891
48 1.38181 1.38187
47 1.37050 1.37066
46 1.35557 1.35560
45 1.33763 1.33820

Table 5. Comparison of the Dirichlet trapped mode wavenumber ks for N = 50, a/s = 0.5 and
NF = 4 with the wavenumber kps at which the peak load occurs within a finite array of 50 cylinders
in the open sea.

The basic unit is now replicated N times in a straight line, by attaching the right-
hand end of one unit to the left-hand end of the neighbouring unit. Both ends are
then fixed (fixed boundary condition) or allowed to be free to move (free boundary
condition). In both cases, we can deduce the eigenvalues of the discrete system
(omitting the rigid-body mode of the free boundary condition system) by the method
of Faulkner & Hong (1985) as

ω2
q = 2− 2 cos

(qπ
N

)
,

{
q = 1, 2, . . . , N (for fixed boundary condition)
q = 1, 2, . . . , N − 1 (for free boundary condition).

(3.7)
The corresponding eigenvectors giving the displacements are

d
(q)
j = sin

(2j − 1)qπ

2N
, q = 1, 2, . . . , N (for fixed boundary condition), (3.8)

d
(q)
j = cos

(2j − 1)qπ

2N
, q = 1, 2, . . . , N − 1 (for free boundary condition), (3.9)

where index q designates the number of the mode, and the subscript j identifies the
mass.
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These are identical with the formulae for B2n+1 in (2.24) and (2.25). Thus (3.8)
represents the wave force distributions for Neumann trapped modes, whereas (3.9)
represents those for Dirichlet trapped modes. This analogy with the classical periodic
structure, for which a rich literature is available, opens up several opportunities for
the analysis of hydrodynamic resonances in periodic systems.

4. Conclusions
Trapped modes around a row of vertical circular cylinders in a wave channel which

are aligned along the plane perpendicular to the channel walls have been established
to exist. The cylinders are identical and equally spaced, and the spacing between
adjacent cylinders is 2s while that between the ends of the cylinders and the channel
walls is s.

Multipole expansions have been employed to construct the trapped mode potentials.
However, each multipole potential radiates standing waves, which do not vanish even
at large distances |x|. In order to cancel out the standing waves at large values
of |x| and to construct the trapped mode solutions, we have introduced ‘empirical’
formulae for the coefficients of the multipoles, by which cancellation of the standing
wave components has been made. By introduction of these formulae, the cutoff
wavenumbers have been shown to become much higher than those in the original
problem, and below the cutoff wavenumber of the modified problem, one trapped
mode has been found. Because N independent such modified problems, each having
different cutoff wavenumbers, can be defined for an array of N cylinders, and only
one trapped mode has been found for each modified problem just below the cutoff
wavenumber, we may reach the simple conclusion that ‘N trapped modes exist for an
array composed of N cylinders’.

We note, however, that because the formulae for the coefficients of the multipoles
are only sufficient conditions to satisfy the boundary conditions at large distances |x|,
we may still have additional trapped modes. Thus we have to change the arguments
to ‘at least N trapped modes exist’. Moreover, as is already known, for a large radius
single cylinder (a/s & 0.6789) in a tank the Dirichlet trapped mode does not exist.
This still applies for an array of cylinders; thus for an array of cylinders whose radii
are larger than 0.6789s, we have to change the argument to ‘at least N − 1 Dirichlet
trapped modes exist if a/s & 0.6789 applies’.

Rigorous mathematical proof of the existence of the trapped modes has not
been made in this paper. The existence of the Nth trapped mode (q = N) can be
easily shown, however, by appropriately copying the trapped mode wave for the one
cylinder case. For an obstacle which is symmetric about the centreline of the channel,
the existence proof of the trapped mode has already been made by Evans et al.
(1994); thus for an array of such obstacles, the Nth trapped mode has been shown
to exist. For the other modes including the first mode, the existence proof remains to
be resolved.

An analogy of the trapped modes with the near-resonant phenomenon in the wave
diffraction around an array of cylinders has also been presented. By means of the
analogy, mode-like behaviour in the near-resonant phenomenon has been explained
in this paper. Another analogy has also been drawn with a mass–spring system as a
classical periodic structure, by which we may obtain some physical insights to help
understand the phenomenon. Porter & Evans (1998) have discussed another analogy,
between the near-resonant phenomenon in an array of cylinders and Rayleigh–Bloch
waves. The latter exist at exactly the same wavenumbers as our results shown in
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table 4. Equivalency of the problem of Rayleigh–Bloch waves in a periodic cylinder
array and the trapped modes around a row of cylinders in the wave channel can be
anticipated, and it has been demonstrated very recently by Porter & Evans (1999).

T.U. would like to acknowledge the support of the Kajima foundation during his
one-year visit to the University of Oxford.
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